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Abstract – To make artificial creatures deliberately interact with their envi-
ronment like living creatures, a behavior selection method mimicking living 
creatures’ thought mechanism is needed. For this purpose, there has been 
research based on probabilistic knowledge links between input (assumed 
fact) and target (behavior) symbols for reasoning. However, real intelligent 
creatures including human beings select a behavior based on the multi-crite-
ria decision making process using the degree of consideration (DoC) for 
input symbols, i.e. will and context symbols, in their memory. In this paper, 
the DoC-based mechanism of thought (DoC-MoT) is proposed and applied 
to the behavior selection of artificial creatures. The knowledge links between 
input and behavior symbols are represented by the partial evaluation values 
of behaviors over each input symbol, and the degrees of consideration for 
input symbols are represented by the fuzzy measures. The proposed method 
selects a behavior through global evaluation by the fuzzy integral, as a multi-
criteria decision making process, of knowledge link strengths with respect to 
the fuzzy measure values. The effectiveness of the proposed behavior selec-
tion method is demonstrated by experiments carried out with a synthetic 
character “Rity” in the 3D virtual environment. The results show that the 
artificial creatures with various characteristics can be successfully created by 
the proposed DoC-MoT. Moreover, training the created artificial creatures 
to modify their characteristics was more efficient in the DoC-MoT than the 
probability-based mechanism of thought (P-MoT), both in terms of the 
number of parameters to be set and the amount of time consumed. 
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I. Introduction

U biquitous robot incorporating 
mobile robot (Mobot), embed-
ded robot (Embot) and software 
robot (Sobot) was introduced 

for various services at any place and any 
time [1]. Mobot provides integrated 
mobile services in cooperation with 
Embot and Sobot. Embot is embedded in 
the environment to collect sensor data, and 
Sobot in a virtual world makes a decision. 
In recent years, pet-type Sobots were 
developed to be mounted on cell phones 
or computers as artificial creatures or syn-
thetic characters. As they might behave like 
a real world creature, they could be used as 
an intermediate interface for interaction 
with a user [2]–[4]. 

To act like a living creature, the artificial 
creature should behave according to its 
desire in a certain situation. In this regard, 
there has been research on behavior 
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 selection methods using the control architecture for decision 
making of living creatures [5]–[8]. The architecture organized 
into perception, behavior, motivation and actuator modules 
was proposed for behavior selection [9]–[16]. The context and 
desire are generated respectively in the perception and motiva-
tion modules. In the behavior module, each candidate behav-
ior is evaluated based on the desire and context, and the best 
one is selected. Then, the selected behavior is generated 
through the actuator module. Considering both deliberative 
and reflexive behaviors, a control architecture for probabilistic 
and deterministic behavior selections was proposed for artifi-
cial creatures [17]. The artificial creatures probabilistically select 
a behavior based on their internal state including motivation, 
homeostasis and emotion, and external sensor information as a 
deliberative behavior. A reflexive behavior that imitates animals 
instinct is selected deterministically using only external sensor 
information. 

A two-layered confabulation architecture was proposed for 
behavior selection considering internal state and context using 
confabulation theory [18]. The confabulation theory illustrates 
the mechanism of thought of human beings [19]. The key idea 
is that each thalamocortical module is equipped with a large 
collection of input symbols of internal state and context, where 
the pairs of co-occuring symbols are connected by knowledge 
links. As a result of “thought process,” one target symbol is 
selected among behavior symbols by confabulation. In this 
scheme, the knowledge link between co-occurring symbols is 
represented by conditional probability. 

However, the human thought process is not based only 
on crisp numbers. Though such statistical information as 
conditional probabilities is an important part of the human 
thought process, it, generally, is not the dominant deciding 
factor. The personal biases, based on psychological and cog-
nitive aspects of the human personality, and the environ-
mental conditions have a dominant effect on the human 

thought process. For example, a person can be 
inclined towards a particular choice because of 
his/her optimism, belief, prejudice or some 
other personal or environmental aspect even 
though the statistical figures claim the feasibil-

ity of making some other choice. The effects of these per-
sonal biases on the human thought process and decision 
making were discussed in detail [20]–[22]. Besides, another 
real life characteristic that confabulation fails to effectively 
represent is the mutual interactions among wills or contexts 
ranging from redundancy (negative interaction) to synergy 
(positive interaction) [23]. 

This paper proposes the degree of consideration-based 
mechanism of thought (DoC-MoT) and its application to the 
behavior selection method for artificial creatures. The human-
like thought process which is affected by personal biases and 
prejudices based on psychological, cognitive or environmental 
grounds, is used to model the mechanism of thought for artifi-
cial creatures. The creatures’ degrees of consideration (DoCs) 
for their internal wills and environmental contexts constitute 
the basis of the thought mechanism. In the proposed model, 
the DoCs for input (i.e. wills and contexts) symbols are repre-
sented by the fuzzy measures and the fuzzy integral is used for 
the global evaluation of the target (i.e. behavior) symbol on the 
basis of the partial evaluations over input symbols and their 
DoCs [24], [25]. The effectiveness of the proposed behavior 
selection method using the DoC-MoT is demonstrated by 
experiments carried out with a synthetic character “Rity,” in a 
3D virtual environment. 

This paper is organized as follows. Section II briefly 
describes confabulation theory that explains the probabili-
ty-based mechanism of thought (P-MoT) and proposes the 
DoC-MoT. Section III proposes a behavior selection 
method using the proposed DoC-MoT. Section IV pres-
ents the experimental results to demonstrate the effective-
ness of the proposed method. The concluding remarks 
follow in Section V. 

II. Modeling the Mechanism of Thought
An artificial creature, which acts like a real creature, mimics 
the real creature’s thought mechanism. Fig. 1 shows a typical 
conventional architecture, which has two behavior generation 
paths: the deliberate generation and the reflexive generation 
[9]-[16]. In case of deliberate generation, a proper behavior is 
selected in the behavior module considering its desire and 
environmental context generated respectively in the motiva-
tion and perception modules, and the selected deliberative 
behavior is expressed through the actuator module. In reflex-
ive generation, the sensor information in the perception mod-
ule bypasses the motivation stage in order to take emergency 
measures. This reflexive behavior generation is inspired from 
the reflex actions in biological species. To generate the delib-
erative behaviors as a consequence of the thought process, the 
architecture should be embodied with a well-modeled mech-
anism of thought. In this section, the probability-based 

FIGURE 1 Schematic diagram of a typical conventional architecture 
for artificial creatures.
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 mechanism of thought (P-MoT) is briefly reviewed, and a 
novel model of the DoC-based mechanism of thought (DoC-
MoT) is proposed. 

A. The Probability-Based Mechanism of Thought (P-MoT)
The mechanism of thought is modeled by the confabulation 
theory based on probability [19]. To understand the mecha-
nism of thought, the things to be understood first are: what 
forms a brain and how the brain functions. As muscles are 
composed of several individual fibers, the brain is formed of a 
number of well-connected neurons [26]. A set of connected 
neurons  represents various symbols which are composed of 
input symbols (assumed fact symbols) and target symbols, 
such as “red,” “sweet,” as input symbols and “apple” as a target 
symbol, etc., where the symbols are grouped into 
“color,”  “taste,” “word,” etc. The links between the input and 
target symbols, e.g. the links between “red” and “apple” and 
between “sweet” and “apple” represent the knowledge about 
perceived entities, e.g. the “likeliness” of an “apple” to be 
“red” or the “likeliness” of an “apple” to be “sweet,” and 
therefore, they are called the knowledge links. The knowledge 
links, such as “likeliness” in this example, are represented by 
conditional probabilities, and they describe the agent’s degree 
of belief about the target symbol to possess the attributes 
specified by the input symbols. 

With the knowledge links between input and target sym-
bols, the cognitive information-processing is employed by 
confabulation as shown in Fig. 2(a). When some of the input 
symbols, e.g. a, b, c and d, are expressed (perceived), each tar-
get symbol receives input excitations by knowledge links 
from them. Since the strength of the knowledge link is repre-
sented by conditional probability, the total input excitation 
I 1z 2  for target symbol z, is calculated using Bayes’ rule as fol-
lows [27]: 

I 1z25 p 1abcd|z 2 4
 5 c p 1abcdz 2

p 1az 2 d c p 1abcdz 2
p 1bz 2 d

 3 c p 1abcdz 2
p 1 cz 2 d c p 1abcdz 2

p 1dz 2 d 3p 1a|z 2p 1b|z 2p 1 c|z 2p 1d|z 24.
 (1)

In general, the first four terms can be approximated as a con-
stant number in any given situations as follows: 

 c p 1abcdz 2
p 1az 2 d c p 1abcdz 2

p 1bz 2 d c p 1abcdz 2
p 1 cz 2 d c p 1abcdz 2

p 1dz 2 d < K. (2)

Thus, I 1z 2  can be approximately calculated as 

 I 1z 2 < K 3p 1a|z 2p 1b|z 2p 1 c|z 2p 1d|z 24. (3)

Once the total input excitations of all the target symbols are 
calculated, the target symbol with the highest input excitation 
is selected as a conclusion and this “winner-take-all” competi-
tion among target symbols is called confabulation. 

B. The DoC-Based Mechanism of 
Thought (DoC-MoT)—A Novel Approach
Though the probability-based information processing, as 
described in the previous section, selects a behavior based on 
the multi-criteria decision making process considering both its 
desire and external context [18], there can be some exceptions 
where the thought process is largely affected by personal biases 
[21]. These biases generally occur due to psychological and 
cognitive aspects of personality. To tackle these issues, a novel 
approach that considers these personal biases, while selecting an 

FIGURE 2 Modeling the mechanism of thought: The total input excitation for symbol z is represented by I 1z 2 , calculated by confabulation in the 
P-MoT and by the fuzzy integral in the DoC-MoT. (a) The probability-based mechanism of thought (P-MoT) and (b) The DoC-based mechanism 
of thought (DoC-MoT).
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appropriate behavior, is needed. One such approach, based on 
considering the creature’s own DoCs and the decision making 
process for modeling a thought process, is proposed in this 
paper. These DoCs quantitatively define the creature’s inclina-
tion towards a particular will or a context. 

To represent the DoC for a criteria set, the fuzzy measure 
representation is preferred because besides representing the 
wills and contexts, it can also effectively represent the mutual 
interactions among them. The fuzzy integral based approach for 
global evaluation was considered because of its usefulness in the 
multi-information aggregation and the multi-criteria decision 
making [24]. Now, denote a set of symbols, e.g. input symbols 
for creature’s wills and contexts, by X5 5x1, c, xn6 and the 
power set of X by P 1X 2 . With these notations, the definitions 
of the Sugeno l-fuzzy measure and the Choquet fuzzy integral 
are summarized in the following [25]. 

Definition 1 A fuzzy measure on the set X of symbols is a 
set function g : P 1X 2 S 30, 1 4 satisfying the following axioms; 

i) g 1[ 2 5 0, g 1X 2 5 1; 
ii) A ( B ( X implies g 1A 2 # g 1B 2 . 
The Sugeno l-fuzzy measure satisfies the following [24]: 

 g 1AhB 2 5 g 1A 2 1 g 1B 2 1lg 1A 2g 1B 2 ,  (4)

where g 1A 2  and g 1B 2 , A, B ( X, represent the DoCs for the 
subsets A and B, respectively, and l denotes an interacting 
degree index. To calculate the fuzzy measures more efficiently, j 
is used as an another interaction degree index [28]. If 
0 # j , 0.5, (4) becomes a plausible measure, if j5 0.5, a 
probability measure, and if 0.5 , j # 1, a belief measure. 
Table 1 shows the relationship between two interaction degree 
indices. Note that if two symbols have positive (negative) 
cor relation, i.e. g 1AhB 2 , g 1A 2 1 g 1B 2  1 g 1AhB 2 .  
g 1A 2 1 g 1B 2 2 , the global evaluation by the fuzzy integral over 
the symbols is to be underestimated (overestimated) [29]. The 
Choquet fuzzy integral which can be used in a discrete domain 
problem is defined in the following [30]. 

Definition 2 Let h be a mapping from finite set X  to 30, 1 4. For xi [ X, i5 1, 2, c, n, assume h 1xi 2 # h 1xi11 2  
and Ei5 5xi, xi11, c, xn6. The Choquet fuzzy integral of h 
over X with respect to a fuzzy measure g is defined as 

 3
X

h ° g5 a
n

i51

1h 1xi 2 2 h 1xi21 2 2g 1Ei 2 . (5)

Using the definitions of the Sugeno l-fuzzy measure and 
the Choquet fuzzy integral, the thought process of the pro-
posed approach is realized as in Fig. 2(b). When some of 
input symbols, e.g. a, b, c and d, are expressed (perceived), 
each target symbol receives input excitations by both knowl-
edge links and the DoCs for the input symbols. If the DoC 
for input symbol a is high, target symbol z is more strongly 
linked to a than other input symbols. This approach is called 
the DoC-MoT. 

In the DoC-MoT, the fuzzy measures 
are employed to represent the DoCs for 
input symbols, e.g. g 1a 2 , g 1b 2 , c, g 1X1 2 , 
where X1 = 5a, b, c, d6, and the fuzzy 
integral is used to globally evaluate each 
target symbol considering both the DoCs 
and the knowledge link strengths 
between the input and target symbols. The 
strengths are given by the partial evalua-
tion values hz 1a 2 , hz 1b 2 , hz 1 c 2 and hz 1d 2  
of target symbol z over input symbols 
a, b, c and d. Then, the total input excita-
tion I 1z 2 from input symbols a, b, c and d 
to target symbol z is calculated by the 
fuzzy integral, as follows: 

 I 1z 2 5 3
X1

h ° g. (6)

III. Behavior Selection Method
In this section, the DoC-MoT is applied 
to the behavior selection problem. Fig. 3 
shows the overall architecture of the 

TABLE 1 Fuzzy measure property and interaction degree.
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 proposed method, which is composed of 
10 modules: sensor, perception, user 
command, context, internal state, learn-
ing, memory, behavior selection, reflexive 
behavior and actuator modules. The con-
text module identifies a current environ-
mental context using perceptions from 
the perception module, and the internal 
state module identifies a current will of 
an artificial creature. The memory mod-
ule stores all the necessary memory con-
tents including symbols of wills, contexts 
and behaviors. It also has the information 
on the DoCs for input symbols and the 
knowledge links between input and 
behavior (target) symbols. The DoCs are 
represented by the fuzzy measures and 
the knowledge link strengths are given by 
the partial evaluation values of behavior 
symbols over each input symbol. Consid-
ering the identified will and context, the 
behavior selection module selects a prop-
er deliberative behavior by the fuzzy 
integral aggregating the partial evaluation 
values and the DoCs for input symbols. 
The reflexive behavior module selects a reflexive behavior 
using sensor information from the perception module. The 
learning algorithm to change the characteristics of artificial 
creatures is executed in the learning module. The key modules 
for behavior selection, namely internal state, behavior selec-
tion, learning and memory modules, are described [17], [18], 
[31], [32]. 

A. Internal State Module
The internal state module deals with the internal information 
including internal wills. In this module, the strength of the jth 
will, Vj 1 t 2 , j5 1, 2, c, n, where n is the number of wills, is 
updated by 

Vj 1 t11 25Vj 1 t 21aj 1Vj2Vj 1 t 2 2 1 ST # Wj 1 t 22dij 1 t 2 , (7)

where t is the time step, aj is the difference gain, Vj is the 
steady state value, S is the stimulus vector, Wj is the strength 
vector between stimulus and the jth will and dij 1 t 2  is the 
amount of the change of the jth will strength caused by the 
previous ith behavior. The first adding term in (7) makes the j
th will strength converging to the steady state value. For exam-
ple, as time goes by without any stimulus, the will to play gets 
stronger and stronger, and finally it converges to the pre-
assigned steady state value. The second adding term denotes the 
amount of the change of the jth will strength caused by exter-
nal stimuli. If a user punishes an artificial creature, its “will to 
self-protect” gets stronger. The final adding term is the one 
caused by the previous behavior. If the previous ith behavior 
has a positive effect on the jth will (e.g. eating behavior and 

“will to eat”), dij 1 t 2  is a positive value. If it has a negative effect 
on the jth will (e.g. kicking-ball behavior and “will to rest”), 
dij 1 t 2  is a negative value. The calculated current will strengths 
are used in the behavior selection module. 

B. Behavior Selection Module
In the behavior selection module, one proper behavior is cho-
sen using the artificial creature’s will strengths, environmental 
contexts and its DoCs for wills and contexts. Fig. 4 shows the 
block diagram of the behavior selection module. The solid and 
dotted arrows denote the movement of data related to wills and 
contexts and the behavior recommendation, respectively. Firstly, 
all the behaviors are evaluated considering its wills in a will-
based evaluation. The normalized weights of wills are called up 
from a long-term memory to calculate the fuzzy measure val-
ues of all the related will sets. The will-based global evaluation 
value of each behavior is calculated by the fuzzy integral with 
respect to the fuzzy measure values of will sets, current will 
strengths and the partial evaluation values of behaviors over 
each will. Some proper behaviors to current wills are recom-
mended to the next context-based evaluation stage and also to 
the arbiter for selection through a competition process. The 
recommended behaviors are re-evaluated considering external 
contexts in a context-based evaluation by the same manner of 
the will-based evaluation. After the context-based evaluation, 
the arbiter selects one behavior through competition. Then, it is 
actuated in the actuator module. The following describes in 
detail the procedure for the behavior selection process. 
1) Definition of Input and Target Symbols: For the behavior selec-

tion to make the artificial creatures deliberately interact 
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with their environment like living creatures, input and tar-
get symbols should be first defined. In this paper, their 
internal wills and external environmental contexts are 
defined as input symbols, and their behaviors are consid-
ered as target symbols. The input and target symbols used 
in the experiments are provided in Section IV. 

2) Fuzzy Measure Identification of Will Set: Let us denote a 
s e t  o f  w i l l s  by  Xw5 5w1, w2, c, wn6,  whe re 
wj,  j5 1, 2, cn, represents the jth will. The number of 
subsets of Xw is 2n, and to identify all the fuzzy measures 
of the subsets, 3 12n2 2 2 3 12n2 3 2 4/2 times of pairwise 
comparisons are needed [33]. Thus, in this paper, for the 
efficient identification, the following method is employed 
[34]. The example with detailed calculation process is 
described in Section IV. 

i) Normalized weights of will symbols 
In ordinal analytic hierarchy process (AHP) eigenvalue 

method [33], the normalized weights of will symbols are calcu-
lated by the following ordinal AHP’s pairwise comparison 
matrix (See Tables 5, 6, 7 and 8 in Section IV): 

 C5 ° c11 c c1n

( f (
cn1 c cnn

¢ ,  (8)

where cij represents the importance degree of the ith symbol 
compared to the jth symbol. cii is 1 and cij is given as 1/cji. The 
normalized weight di

w  of the i th will symbol wi, 
i5 1, 2, c, n, is calculated as follows: 

 di
w5

an

j51
cij

an

i51 a
n

j51
cij

. (9)

ii) Interaction diagram 
The interaction diagram of will symbols (Fig. 6 in Sec-

tion IV) shows the interaction degree between two will symbols. 
If the two will symbols have negative correlation (e.g. “will to 
play” and “will to rest”), the interaction degree has a value 
between 0 and 0.5, as Table 1 shows. If the two will symbols have 
positive correlation (e.g. “will to seek shelter” and “will to self-
protect”), the interaction degree has a value between 0.5 and 1. 
Otherwise, the two will symbols are independent, and the inter-
action degree has a value of 0.5. Therefore, the interaction degree 
between the ith and the jth will symbols jij

w lies in 30, 1 4. Using 
the interaction diagram, the hierarchy diagram is constructed. 
iii) Hierarchy diagram 

The hierarchy diagram of will symbols (Fig. 7 in Sec-
tion IV) represents hierarchical interaction relations among will 
symbols by clustering two closely-related will symbols. To esti-
mate how much two will symbols are related, dissimilarity 
between them should be accounted. The dissimilarity D5Gp,Gq6 
between two clusters Gp and Gq, is defined as an average dis-
tance to other symbols as follows: 

 D5Gp,Gq65
aGr[F, Gr2Gp, Gr2Gq

3j5Gp, Gr6w 2j5Gq, Gr6w 42
|F|2 2

,  (10)

where F is a set of all clusters which can be a will symbol or 
a set of clustered will symbols, Gp, Gq, Gr [ F are clusters, 
j5Gi, Gj6w  is the interaction degree between will clusters Gi and 
Gj and |F| is the number of symbols of F. 

Two will clusters that have the smallest dissimilarity are 
merged into one, and the interaction degrees among will clus-
ters are recalculated. The interaction degree j5Gp, Gq6w  between 
two clusters Gp and Gq is calculated as 

 j5Gp, Gq6w 5
a Qi, jR[ QE QGpR3E QGqRR jij

w

|E AGpB 3 E AGqB| ,  (11)

FIGURE 5 Screenshot of Ritys in the 3D virtual world.
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where A 3 B is the direct sum and E 1Gp 2  is the function 
which picks up all symbols in the set Gp. The merging proce-
dure is done until all groups are merged. Final structure of the 
hierarchy diagram is characterized by the interaction relations 
that are ‘And like’ or ‘Or like’ connections. The hierarchy dia-
gram is simplified by re-merging two clusters if the difference 
between the interaction degrees of merged cluster and original 
clusters is less than 0.2 [34]. 
iv) Fuzzy measure identification 

After getting the hierarchy diagram, a fuzzy measure g 1A 2 , 
where A ( Xw, is identified as follows: 

 g 1A 2 5fsajR
w, a

P(R
uP

Rb,  (12)

where R is the root level in the hierarchy diagram, fs is a scal-
ing function [28] and uQ

P  is defined as follows: 

 fs 1j, u 2 5f 1, if  j5 1 and u . 0
0, if  j5 1 and u5 0
1, if  j5 0 and u5 1
0, if  j5 0 and u , 1

su2 1
s2 1

, other  cases

, (13)

uQ
P 5 • di

w, where i [ Q    if  |Q|5 1 and i [ A
0 if |Q|5 1 and i o A
fs
21 (jw

P, fs (j
w
Q , gV(Q uQ

V ) 3 TQ
P ) other cases

,

 (14)

where s5 112j 2 2/j2 and the value of fs
21 1j, r 2  is u, which 

satisfies fs 1j, u 2 5 r. The conversion ratio TQ
P from Q to P, is 

computed as 

 TQ
P 5

fsQjP
w, a i[Q

di  
w R

fsQjQ
w , a i[Q 

di
wR ,  (15)

where P is the upper level set and Q is the lower level set in 
the hierarchy diagram. 
3) Fuzzy Measure Identification of Context Set: The fuzzy 

measure identification of the context set is achieved by 
the same manner as that of the will set. The normalized 
weight of each context is computed using the pairwise 
comparison method, and the hierarchy diagram of con-
texts is constructed from the interaction diagram of con-
texts. The fuzzy measure value g 1A 2  of the context set A 
is calculated by a scaling function fs in (13) using the 
normalized weights of contexts and the hierarchy dia-
gram of contexts. 

4) Global Evaluation of Behaviors Over Wills: Let us denote a 
set of behaviors by Xb5 5b1, b2, c, bp6, where p is the 
number of behaviors and bi, i5 1, 2, c, p, represents 
the jth behavior. The global evaluation value Ew 1bi 2  of 
the ith behavior bi, i5 1, 2, c, p, with respect to the 
fuzzy measure values of will sets and the knowledge links 
between bi and wills, is computed by the Choquet fuzzy 
integral as follows: 

 Ew 1bi 2 5 3
Xw

h° g 

 5 a
n

j51

5hij
w # Vj 1 t 2 2 hi 1 j212w # Vj21 1 t 2 6g 1A 2 ,  (16)

where g 1A 2  is a l-fuzzy measure of A ( Xw, identified by (12), 
hij

w [ 30, 1 4 is the partial evaluation value of the ith behavior 
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FIGURE 7 Simplified hierarchy diagram of wills.
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bi over the jth will, which denotes the knowledge link strength 
between the ith behavior and the jth will. 

Once the behavior evaluation using current wills is done, 
some behaviors with a higher evaluation value bi

r, 
i5 1, 2, c, l, where l is the number of the recommended 
behaviors, are recommended to the next behavior evaluation 
stage to consider external contexts and also sent to the arbiter 
for selection through a competition among them. 
5) Global Evaluation of Behaviors over Contexts: Let us denote 

a set of contexts by Xc5 5c1, c2, c, cm6, where m is the 
number of contexts and cj, j5 1, 2, c, m, represents 
the jth context. The global evaluation value Ec 1bi

r 2  of the 
ith recommended behavior bi

r, i5 1, 2, c, l, with 
respect to the fuzzy measure values of context sets and 
the knowledge links between bi

r and contexts, is comput-
ed as follows: 

 Ec 1bi
r 2 5 3

Xc

h ° g5 a
mp

j51

1hi j
c 2 hi 1 j212c 2  g 1A 2 ,  (17)

where mp is the number of activated contexts, g 1A 2  is a l-fuzzy 
measure of A ( Xc, identified by (12) and hi j

c [ 30, 1 4 is the 
partial evaluation value of the recommended behavior bi

r over 
the jth activated context cj [ Xc, which denotes the knowl-
edge link strength between the ith recommended behavior and 
the jth activated context. 
6) Behavior Selection: As the global evaluation of behaviors 

over current wills and external contexts is done by the 
fuzzy integral, the fittest behavior is selected through the 
following competition [18]: 

 Ea 1bs 2 5max
j  
3Ew 1bj

r 2  Ec 1bj
r 24, j5 1, 2, c, l,  (18)

where bs is the selected behavior with the highest global evalu-
ation value among the recommended behaviors. 

C. Learning Module
In this paper, learning based on reinforcement signals is 
employed for artificial creatures, which is motivated by the real 
pet-training scheme. The learning process is executed in real 
time using the patting and punishing signals from a user as rein-
forcement signals. As in a human thought process, the reward 
and penalty signals cause the change of the normalized weights 
of corresponding wills or contexts, and the normalized weights 
are used to compute the fuzzy measure values of will and con-
text sets. Note that the artificial creature’s DoCs are represented 
by the fuzzy measures calculated from the normalized weights. 

After being rewarded (punished), the normalized weight of 
a will immediately increases (decreases) in proportion to the 
knowledge link strength between the will and the rewarded 
(punished) behavior. As an example, when the artificial creature 
excretes in the bedroom, it is punished, and then it notices that 

the excretion behavior causes a pain. Since the excretion 
behavior is strongly linked to “will to excrete,” the normalized 
weight of “will to excrete” decreases. However, the normalized 
weight of “will to rest” is not changed, since “will to rest” is not 
related to the excretion behavior. 

If the ith behavior is rewarded or punished, the normalized 
weight of the jth will d j

w, j5 1, 2, c, n, is changed by 

 d j
w 1 t1 1 2 5 • dj

w 1 t 2 1 k1hi j
w 1 reward 2

dj
w 1 t 2 2 k1hi j

w 1penalty 2
dj

w 1 t 2 1otherwise 2  (19)

where k1 [ 30, 1 4 is the learning rate. 
The knowledge link strength between will and behavior 

symbols is changed at the same time as the normalized weight 
of will is updated. When a reward or punishment is given to 
the artificial creature, the knowledge link strength hi j

w 1 t 2  
between the jth will wj and the rewarded or punished behavior 
bi, is updated as follows: 

 hi j
w 1 t1 1 2 5 • hi j

w 1 t 2 1 k2 112 hi j
w 1 t 2 2 1 reward 2

hi j
w 1 t 2 2 k2hi j

w 1 t 2 1penalty 2
hi j

w 1 t 2 1otherwise 2, (20)

where k2 [ 30, 1 4 is the learning rate. 
Eventually, it needs to realize that the excretion behavior “in 

the bedroom” is also a cause of the pain. Such a context as “in 
the bedroom” should be considered. In the case of context, 
however, it is not obvious which context has caused the reward 
or punishment. Thus, the normalized weight of context is 
changed if the context happens repeatedly more than once 
when doing the rewarded or punished behavior. As an example, 
after being punished repeatedly when it excretes in the bed-
room, it notices that “place” is an important factor when 
excreting. Thus, the normalized weight of “place” increases. If 
the context cj is recognized for the rewarded or punished 
behavior bi, the normalized weight of the jth context dj

c, 
j5 1, 2, c, m, is changed by 

 d j
c 1 t1 1 2 5 e dj 

c 1 t 2 1 k3hi j
c 1 reward/penalty 2 ,

dj
c 1 t 2 1otherwise 2  (21)

where k3 [ 30, 1 4 is the learning rate. 
The knowledge link strength between context and behavior 

symbols is changed at the same time as the normalized weight 
of context is updated. When a reward or punishment is given 
to the artificial creature, the knowledge link strength hi j

c 1 t 2  
between the recognized context cj and the rewarded or pun-
ished behavior bi, is updated as follows: 

 hij
c 1 t1 1 2 5 • hi j

c 1 t 2 1 k4 1 12 hi j
c 1 t 2 1 reward 2

hi j
c 1 t 2 2 k4 hi j

c 1 t 2 1penalty 2
hi j

c 1 t 2 1otherwise 2 , (22)

where k4 [ 30, 1 4 is the learning rate. 
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Note that after learning, the normalized weights of wills 
and contexts are normalized and loaded into the memory 
because hi j

w and hij
c  are mappings from the will and context sets, 

respectively, to 30, 1 4 by Definition 2. 

D. Memory Module
The memory module consists of short-term memory 
(STM), long-term memory (LTM) and working memory 
(WM). In the STM, the sensory inputs from an environment 
are kept for a while and the information worthy of remem-
bering is then transferred to the LTM. The LTM is a durable 
storage space for well-learned information. Memory con-
tents in the LTM are the symbols of wills, contexts and 
behaviors, the partial evaluation values of behaviors over 
each will and context and the interaction degrees among 
input symbols. The WM keeps a limited amount of informa-
tion for a limited period of time, such as the candidate 
behaviors during the global evaluation and the previous few 
contexts and behaviors when the artificial creature is reward-
ed or punished for learning. 

IV. Experiments
To demonstrate the effectiveness of the behavior selection 
method using the DoC-MoT, experiments were carried out 
for “Rity,” a synthetic character, which was developed in the 
3D virtual world using OpenGL. Rity has 14 degrees of free-
dom for motions to express 40 behaviors and 7 wills as internal 
states, and it can perceive 9 contexts in its environment. In the 
environment, as Fig. 5 shows, there are food items, balls, a bed, a 
toilet and the fellow Ritys. The first goal of the experiments is 
to confirm that Rity’s behaviors selected by the DoC-MoT are 
reliable. According to the knowledge links in memory, Rity 
behaves differently even in the same situation. The second goal 
is to create Rity with the desired characteristics through learn-
ing. The third goal is to show that the behavior selection meth-
od using the DoC-MoT is more effective compared to that 
using the P-MoT. Note that Rity which is a form of a dog and 
selects a behavior following the DoC-MoT, can give comfort 
to the user, since the user feels comfortable when Rity behaves 
as he or she has expected. 

A. Experimental Setting
For practical experiments, 24 hours in the virtual world 
were scaled down to one hour in the real world. In every 
2.5s, a proper behavior was selected by the proposed behav-
ior selection method. The behavior generation frequency, 
which was used to check Rity’s characteristics, was comput-
ed for each behavior from the experimental result gathered 
for one hour, i.e. one day in the virtual world. Note that the 
partial evaluation values of behaviors over each will and 
context, the strength vector between stimulus and wills and 
the amounts of will strength change by the previous behav-
ior, were initialized by an expert, and the context on an 
object which appears in front of Rity, was randomly given 
to attain the reliable behavior generation frequency. A 

mouse click or double click was used for a reward or pun-
ishment, respectively. 

B. Definition of Input and Target Symbols
In this paper, the Rity’s wills were categorized into seven kinds 
based on the categorization of canine behaviors [9]. As shown 
in Table 2, there are twelve kinds of canine behaviors, but in 
the experiments, some inappropriate behaviors for Rity, i.e. 
sexual, miscellaneous motor and maladaptive behaviors, were 
excluded, and for simplicity, behaviors in the same category, e.g. 
epimeletic, et-epimeletic, allelomimetic and agonistic behaviors, 
were assumed to generate the same will, i.e. “will to have com-
radeship” as an assumed fact. Also, assumed facts on context 
were classified for “time (when),” “place (where)” and “object 
(what).” As Table 3 shows, nine assumed facts on context were 
defined. Note that among the assumed facts on a specific con-
text, i.e. “when,” “where” or “what,” only one assumed fact 
from each category was activated at a time. Table 4 shows forty 
behaviors as target symbols. 

C. Fuzzy Measure Calculation
As described in Section III, the fuzzy measure values of the will 
and context sets were calculated by the fuzzy measure identifi-
cation method [34]. The detailed procedure of the fuzzy mea-
sure calculation of will sets is described in the following. 
i) Normalized weights of will symbols 

The normalized weight value of each will for four kinds of 
Ritys was calculated by AHP’s pairwise comparison matrix, as 

TABLE 2 Canine behaviors and assumed fact symbols on will.

CANINE BEHAVIOR ASSUMED FACT

PLAY, INVESTIGATIVE (SEARCHING/SEEKING) PLAY (W1 ) 

EPIMELETIC (CARE AND ATTENTION GIVING), 
ET-EPIMELETIC (ATTENTION GETTING), 
ALLELOMIMETIC (DOING WHAT OTHERS DO),  
AGONISTIC (ASSOCIATED WITH CONFLICT) COMRADESHIP (W2) 

COMFORT-SEEKING (SHELTER-SEEKING) SHELTER-SEEKING (W3) 

(ADDITIONAL) SELF-PROTECTION (W4) 

INGESTIVE (FOOD AND LIQUIDS) INGESTION (W5) 

(ADDITIONAL) REST (W6) 

ELIMINATIVE EXCRETION (W7) 

SEXUAL, MISCELLANEOUS MOTOR, MALADAPTIVE (EXCLUDED) 

TABLE 3 Assumed fact symbols on context.

CLASSIFICATION ASSUMED FACT

TIME 

MORNING (C1) 
AFTERNOON (C2) 
EVENING (C3) 
NIGHT (C4) 

PLACE 
BEDROOM (C5) 
TOILET (C6 ) 

OBJECT 

FOOD (C7) 
COMRADE (C8) 
TOY (C9) 
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TABLE 7 The pairwise comparison matrix for wills of an omnivorous Rity.

W1 W2 W3 W4 W5 W5 W7 NORMALIZED WEIGHT

  w 1 1 1/2 1 2/5 1/7 1/4 1/3 0.045 (d1
w) 

  w 2 2 1 2 2/3 1/5 1/3 1/2 0.083 (d 2
 w) 

  w 3 1 1/2 1 1/2 1/8 1/4 1/3 0.046 (d 3
 w) 

  w 4 5/2 3/2 2 1 1/4 1/2 2/3 0.105 (d 4
 w) 

  w 5 7 5 8 4 1 2 3 0.374 (d 5
 w) 

  w 6 4 3 4 2 1/2 1 1/2 0.187 (d 6
 w) 

  w 7 3 2 3 3/2 1/3 2 1 0.160 (d 7
 w) 

shown in Tables 5, 6, 7 and 8, respectively. For a normal Rity, 
each will has the same importance, so all the normalized 
weights of wills were equal to 0.143. For a cheerful and outgo-
ing Rity, “will to play” was set to be 10 times more important 
than “will to self-protect” and 9 times more important than 
“will to rest.” As a result, the normalized weight value of “will 
to play” was 0.342, that of “will to self-protect” was 0.026 and 
so on. For an omnivorous Rity, “will to eat” was set to be 7 
times more important than “will to play” and 4 times more 
important than “will to self-protect.” Thus, the normalized 
weight value of “will to ingest” was 0.374 and so on. For a 
timid Rity, “will to self-protect” was set to be 8 times more 
important than “will to play” and 3 times more important than 
“will to ingest.” Then, the normalized weight value of “will to 
self-protect” was 0.287 and so on. 

In the following, the fuzzy measure values are calculated for 
the cheerful and outgoing Rity. The same procedure can be 
applied for the other Ritys. 
ii) Interaction diagram 

As defined, the number of wills was 7, and the interaction 
diagram of wills is shown in Fig. 6, where Xw5 5G1, G2, G3, 
G4, G5, G6, G76 5 5Play, Comradeship, Shelter-seeking, Self-
protection, Ingestion, Rest, Excretion6. The number on the 
line connecting two wills is the interaction degree (j) between 
them. If they have a negative correlation (dashed line), the 
interaction degree has a value between 0 and 0.5. If they have 
a positive correlation (dotted line), the interaction degree has a 
value between 0.5 and 1. Otherwise, they are independent of 
each other (solid line), and the interaction degree has a value 
of 0.5. 
iii) Hierarchy diagram 

To estimate how much two wills were related, the dissimi-
larity between them was accounted, and two wills that had the 

TABLE 5 The pairwise comparison matrix for wills of 
a normal Rity.

W1 W2 W3 W4 W5 W6 W7 NORMALIZED WEIGHT

w1 1 1 1 1 1 1 1 0.143 (d1
w) 

w2 1 1 1 1 1 1 1 0.143 (d2
w) 

w3 1 1 1 1 1 1 1 0.143 (d3
w) 

w4 1 1 1 1 1 1 1 0.143 (d4
w) 

w5 1 1 1 1 1 1 1 0.143 (d5
w) 

w6 1 1 1 1 1 1 1 0.143 (d6
w) 

w7 1 1 1 1 1 1 1 0.143 (d7
w) 

TABLE 6 The pairwise comparison matrix for wills of a cheerful and outgoing Rity.

W1 W2 W3 W4 W5 W6 W7 NORMALIZED WEIGHT

w1 1 3/2 6 10 3 9 3 0.342 (d1
w) 

w2 2/3 1 5 8 2 7 2 0.255 (d2
w) 

w3 1/6 1/5 1 2 1/3 2 1/3 0.060 (d3
w) 

w4 1/10 1/8 1/2 1 1/5 1/2 1/5 0.026 (d4
w) 

w5 1/3 1/2 3 5 1 3 1 0.137 (d5
w) 

w6 1/10 1/7 1/2 2 1/3 1 1/3 0.043 (d6
w) 

w7 1/3 1/2 3 5 1 3 1 0.137 (d7
w) 

TABLE 4 Target symbols of behaviors.

b1 STOP b21 LOOK AROUND

b2 SIT b22 LOOK AT 

b3 CROUCH b23 EAT CHEERFULLY 

b4 SHAKE HEAD b24 EAT SLOWLY 

b5 LIFT ARM b25 EXCRETE 

b6 WHINE b26 URINE 

b7 GO BACK AND FORTH b27 SLEEP 

b8 STEP BACK QUICKLY b28 NAP 

b9 STEP BACK SLOWLY b29 DIG QUICKLY 

b10 WANDER QUICKLY b30 DIG SLOWLY 

b11 WANDER SLOWLY b31 SCRABBLE QUICKLY 

b12 MOVE CHEERFULLY b32 SCRABBLE SLOWLY 

b13 MOVE QUICKLY b33 PUSH 

b14 MOVE SLOWLY b34 KICK 

b15 FOLLOW AFTER CLOSELY b35 BITE 

b16 FOLLOW SLOWLY b36 GROWL 

b17 APPROACH b37 BARK LOUDLY 

b18 MOVE AROUND SLOWLY b38 BARK 

b19 MOVE AROUND QUICKLY b39 BARK SOFTLY 

b20 SNIFF b40 HOWL 
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smallest dissimilarity were merged into one. For example, the 
dissimilarity between “will to play (G1)” and “will to have 
comradeship (G2)” was calculated as 

 D5G1, G265 j15
w 2j25

w

|F|2 2
5
10.32 0.35 2 2

72 2
5 0.0005. (23)

After calculating the dissimilarity, “will to seek shelter (G3)” and 
“will to self-protect (G4)” were merged into one, since they had 
the smallest dissimilarity. To merge another pair of wills, the 
interaction degrees among clusters were re-computed. For 
example, the interaction degree between G1 and 5G3, G46 was 
computed as j5G1, 5G3, G466w  5 1j13

w 1j14
w 2 /25 0.5. The merging 

procedure was done until all wills were merged. Fig. 7 shows the 
simplified hierarchy diagram. 
iv) Fuzzy measure identification 

The fuzzy measure values of the will sets were computed by 
using the simplified hierarchy diagram (Fig. 7). As an example, 
the fuzzy measure value g 1A 2  of A5 5G36, for the cheerful 
and outgoing Rity, was calculated as 

 g 1A 2 5fs 1jR
w, uC

R1 uD
R 2  

 5fs 10.5, uD
R 2  

 5fs 10.5, fs
21 10.5, fs 10.8, 0.06 2 3 TD

R 2 2   
 5fs 10.5, fs

21 10.5, 0.1635*0.3800 2 2   
 5fs 10.5, 0.0621 2 5 0.0621. (24)

The fuzzy measure identification of the context set was achieved 
by the same manner as that of the will set. Since the contexts, i.e. 
“time,” “place” and “object” are independent of each other, all 
the interaction degrees among them were valued at 0.5, and the 
hierarchical diagram was an ‘independent’ integration of the 
three contexts. Therefore, the fuzzy measure value of the context 
set was the weighted sum of the normalized weights for the 
related contexts. The calculated fuzzy measure values of the will 
and context sets were used for behavior selection. 

D. Experimental Results
i) Experiment 1: Four Ritys with different characteristics 

Using the pairwise comparison matrices in Tables 5, 6, 7 and 
8, four kinds of Ritys with different characteristics, i.e. normal, 
cheerful and outgoing, omnivorous and timid, were created, 
respectively. For each pairwise comparison matrix, the fuzzy 

measures of the will sets were calculated using a hierarchy dia-
gram. Behaviors were selected as a result of global evaluation 
by the Choquet fuzzy integral of the knowledge links with 
respect to the fuzzy measures. Fig. 8 shows the mean and stan-
dard deviation of the behavior generation frequencies for the 
total number of selected behaviors, 1,440 per day, for each kind 
of Rity. Note that the error bar in Figures 8–14 denotes the 
standard deviation. For the normal Rity, the mean frequencies 
of stepping-back, eating, kicking and barking behaviors were 
about 7%, 9%, 17% and 11%, respectively. The most frequent 
behavior of the cheerful and outgoing Rity was “kicking a 
ball” of about 34%. For the omnivorous Rity, eating behaviors 
were dominant with over 17%. For the timid Rity, barking 
behaviors were dominant with over 27%, and stepping-back 
behaviors were about 15%. The standard deviation of each 
behavior generation frequency for four Ritys was less than 2%. 
These results show that by changing the weight of each will in 
the behavior selection method using the DoC-MoT, Rity 
could be created with different characteristics. 

However, creating different characteristics of an artificial 
creature using the P-MoT is time-consuming and gives unde-
sirable results in some cases, which can be achieved by two 
means: (1) changing all the conditional probabilities associated 
with the knowledge link strengths, and (2) applying the learn-
ing scheme to the initially created creature which has normal 
characteristics. For (1), the maximum numbers of pre-given 
parameters and parameters to be set to create different charac-
teristics, in the two behavior selection methods were compared, 
as shown in Table 10. In general cases, the numbers of contexts 
and behaviors can be approximated by the number of wills and 

TABLE 8 The pairwise comparison matrix for wills of a timid Rity.

W1 W2 W3 W4 W5 W5 W7 NORMALIZED WEIGHT

w1 1 1 1/6 1/8 1/3 1/6 1/3 0.035 (d1
w) 

w2 1 1 1/5 1/7 1/3 1/6 1/3 0.036 (d2
w) 

w3 6 5 1 2/3 2 2 4 0.233 (d3
w) 

w4 8 7 3/2 1 3 2 3 0.287 (d4
w) 

w5 3 3 1/2 1/3 1 1/2 1 0.105 (d5
w) 

w6 6 6 1/2 1/2 2 1 2 0.203 (d6
w) 

w7 3 3 1/4 1/3 1 1/2 1 0.102 (d7
w) 
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the square of the number of wills, respectively. With this 
approximation, we could say that the maximum number of 
parameters to be set to create different characteristics was con-
siderably less in the behavior selection method using the DoC-
MoT (2n) than that using the P-MoT (2n3). Note that the 
number of parameters for normalized weights is n, since they 
may be given directly, without calculating by the pairwise com-
parison matrix. 

As illustrated before, an artificial creature with different 
characteristics can also be created by applying learning 

scheme to a normal one in the P-MoT. In the experiment, a 
normal Rity, the behavior generation frequency of which 
was similar to that in the DoC-MoT, was initially created by 
changing all the conditional probabilities, and then its char-
acteristics was changed to cheerful and outgoing, omnivo-
rous and timid, respectively, through learning. To create a 
cheerful and outgoing Rity (a timid Rity), wandering, mov-
ing, following, moving-around, pushing and kicking behav-
iors were rewarded (punished). To create an omnivorous 
Rity, eating behaviors were rewarded. The mean and stan-
dard deviation of the behavior generation frequencies for 
each kind of Rity in the two behavior selection methods 
were compared, as shown in Table 10. The p-values were 
derived from an unpaired t-test to evaluate the difference 
between the behavior generation frequency distribution in 
the P-MoT and DoC-MoT. 

For the normal Rity, the numbers of generated behaviors 
were 19 and 16 for the DoC-MoT and P-MoT, respectively. 
Among them, 14 behaviors had no significant difference in the 
means of the generation frequencies, since the p-values were 
larger than 0.05. In other words, the normal Ritys created by 
the DoC-MoT and P-MoT had similar characteristics. Never-
theless, for the cheerful and outgoing, the omnivorous and the 
timid Ritys, the distribution of behaviors (p-values less than 
0.05) showed significant differences between the two behavior 
selection methods. Though the Ritys with P-MoT generated 
proper behaviors to their characteristics, i.e. kicking behavior 
for the cheerful and outgoing Rity, eating behaviors for the 
omnivorous Rity and stepping-back behaviors for the timid 
Rity, the behaviors which had not been generated by the nor-
mal Rity before learning, were not observed either in the other 
Ritys after learning. The generated behaviors from the changed 
Ritys by learning process were restricted to the behaviors 
which had been generated by the normal Rity. On the other 
hand, in Ritys with the DoC-MoT, slowly-following, quickly-
moving and growling behaviors which had not been generated 
by the normal Rity, were observed after learning. This is 
because a reward or punishment in the P-MoT caused the 
change of the conditional probabilities of the specific rewarded 
or punished behaviors and the conditional probabilities related 
to the un-generated behaviors could not be changed. In the 
DoC-MoT, the change of DoCs during learning, can affect the 

TABLE 9 The maximum numbers of pre-given parameters and parameters to be set to create different characteristics.

BEHAVIOR SELECTION USING THE P-MOT BEHAVIOR SELECTION USING THE DOC-MOT

[ OF PRE-GIVEN 
PARAMETERS 

[ OF PARAMETERS 
TO BE SET TO CREATE 
DIFFERENT 
CHARACTERISTICS 

[ OF PRE-GIVEN 
PARAMETERS 

[ OF PARAMETERS 
TO BE SET TO 
CREATE DIFFERENT 
CHARACTERISTICS 

KNOWLEDGE LINK STRENGTHS 1n1m 2  * p 1n1m 2  * p 1n1m 2  * p 0 

NORMALIZED WEIGHTS 0 0 n1m n1m 

INTERACTION DEGREES 0 0 n * 1n2 1 2 /21m * 1m2 1 2 /2 0 

TOTAL < 2n3 < 2n3 < 2n31 n21 n < 2n 

n: the number of wills
m 1 < n 2 : the number of contexts
p 1 < n2 2 : the number of behaviors
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global evaluation of un-generated behaviors as well. Hence, the 
behavior selection method using the DoC-MoT is more effec-
tive for creating Ritys with various characteristics than that 
using the P-MoT. 

ii)  Experiment 2: Changing the characteristics of the omnivorous 
Rity by punishment 

Once the normalized weights of wills and contexts to 
repesent the DoCs for them, are implanted into the Rity’s 

TABLE 10 Generated behaviors of four different kinds of Ritys.

BEHAVIOR NORMAL RITY CHEERFUL AND OUTGOING RITY

DOC-MOT P-MOT P-VALUE DOC-MOT P-MOT P-VALUE 

CROUCH 5.1 6 1.7 7.2 6 1.7 0.012 . 4.8 6 2.8 , 0.001 

SHAKE HEAD 0.1 6 0.2 . 0.343 . . .

WHINE 0.1 6 0.2 . 0.343 . . .

STEP BACK QUICKLY 6.6 6 0.9 6.0 6 1.5 0.304 3.6 6 0.8 6.2 6 3.0 0.025 

STEP BACK SLOWLY 0.6 6 0.0 . . 0.8 6 0.8 . 0.061 

FOLLOW AFTER CLOSELY 6.8 6 0.8 7.2 6 1.3 0.385 . 10.8 6 1.9 , 0.001 

FOLLOW SLOWLY #  0.1 6 0.2 0.343 25.1 6 1.7 . , 0.001 

MOVE AROUND QUICKLY 3.0 6 1.4 6.6 6 3.1 0.005 . 0.3 6 0.3 0.037 

EAT CHEERFULLY 6.5 6 1.1 9.5 6 0.2 , 0.001 5.6 6 1.1 9.8 6 3.6 0.005 

EAT SLOWLY 2.3 6 1.1 2.4 6 0.0 0.736 1.8 6 0.6 1.1 6 2.2 0.372 

EXCRETE 2.6 6 0.8 1.0 6 1.0 0.001 2.6 6 1.2 0.9 6 0.7 0.001 

URINE 5.1 6 1.0 4.6 6 1.0 0.319 6.1 6 0.7 4.2 6 0.8 , 0.001 

SLEEP 18.1 6 0.6 18.5 6 1.0 0.343 7.6 6 0.8 17.5 6 2.2 , 0.001 

NAP 0.1 6 0.2 . 0.343 . . .

SCRABBLE QUICKLY 6.6 6 1.8 2.5 6 1.4 , 0.001 0.1 6 0.2 1.6 6 2.1 0.046 

KICK 17.3 6 1.3 17.8 6 1.6 0.431 33.8 6 1.5 31.1 6 12.0 0.505 

BARK LOUDLY 2.9 6 0.9 2.1 6 0.8 0.053 3.4 6 1.6 3.3 6 0.8 0.849 

BARK 3.3 6 1.4 2.1 6 1.1 0.054 9.7 6 1.8 . , 0.001 

BARK SOFTLY 5.0 6  1.4 3.8 6 1.3 0.062 . 0.3 6 0.4 0.104 

HOWL 8.1 6 1.5 8.6 6 2.4 0.601 . 8.1 6 3.1 , 0.001 

BEHAVIOR
OMNIVOROUS RITY TIMID RITY

DOC-MOT P-MOT P-VALUE DOC-MOT P-MOT P-VALUE 

CROUCH 11.4 6 3.7 0.1 6 0.2 , 0.001 0.3 6 0.6 5.5 6 1.6 , 0.001 

SHAKE HEAD 1.2 6 1.5 . 0.035 . . .

WHINE 1.3 6 1.5 . 0.027 . . .

STEP BACK QUICKLY 3.0 6 1.1 0.9 6 1.2 0.001 10.8 6 2.3 31.2 6 2.3 , 0.001 

STEP BACK SLOWLY . . . 4.1 6 1.7 . , 0.001 

MOVE QUICKLY . . . 1.1 6 1.4 . 0.029 

FOLLOW AFTER CLOSELY . 6.7 6 0.6 , 0.001 0.3 6 0.3 2.4 6 1.8 0.004 

FOLLOW SLOWLY . . . . 5.6 6 2.2 , 0.001 

MOVE AROUND QUICKLY 3.0 6 1.1 3.0 6 1.1 , 0.001 . 3.0 6 1.1 0.148 

EAT CHEERFULLY 15.0 6 1.0 24.2 6 0.5 , 0.001 0.4 6 0.4 12.6 6 0.0 , 0.001 

EAT SLOWLY 1.9 6 0.8 . , 0.001 7.2 6 0.4 . , 0.001 

EXCRETE 3.2 6 1.0 1.0 6 0.8 , 0.001 0.8 6 0.5 0.9 6 0.7 0.856 

URINE 5.4 6 1.4 4.4 6 0.7 0.051 4.0 6 0.9 4.8 6 0.7 0.056 

SLEEP 21.1 6 1.3 21.0 6 0.4 0.894 14.7 6 3.4 8.2 6 1.0 , 0.001 

NAP . . . 13.0 6 4.9 . , 0.001 

DIG QUICKLY . . . 1.3 6 2.0 . 0.074 

SCRABBLE QUICKLY 7.3 6 1.7 6.7 6 1.5 0.424 . 3.7 6 1.9 , 0.001 

KICK 7.6 6 0.5 14.4 6 0.6 , 0.001 6.9 6 1.3 15.3 6 0.4 , 0.001 

GROWL 1.4 6 1.2 . 0.005 5.5 6 3.2 . , 0.001 

BARK LOUDLY 3.8 6 1.1 . , 0.001 0.3 6 0.8 . 0.343 

BARK 0.3 6 0.4 0.1 6 0.3 0.453 3.3 6 1.0 9.1 6 0.3 , 0.001 

BARK SOFTLY 1.1 6 0.5 0.4 6 0.4 0.002 24.1 6 2.5 . , 0.001 

HOWL 4.6 6 2.6 20.0 6 1.0 , 0.001 2.1 6 2.3 . 0.019 

The p-values were derived from an unpaired t-test.
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memory, its characteristics is decided. How-
ever, it can be changed by learning process 
using (19), (21) and (22). In the experiment, 
a punishment from a user in a specific situa-

tion was used to lead to the memory change. The omnivo-
rous Rity, as shown in Table 7, was a subject to be trained 
for one day. Since eating near a toilet was an inappropriate 
behavior for Rity, it was punished when it ate foods around 
the toilet. 

The changes of the omnivorous Rity’s normalized weights 
of wills and contexts are shown in Fig. 9 and Fig. 10, respec-
tively. For the omnivorous Rity, “will to eat” was the strongest 
desire compared to other wills before learning. However, pun-
ishment when eating near a toilet, decreased the omnivorous 
Rity’s normalized weight of “will to eat” from 0.37 to 0.15, 
whereas the normalized weights of other wills increased. As a 
result, “will to rest” became the strongest desire. In the case of 
contexts, the normalized weights of “time,” “place” and 
“object” were the same before learning. However, after learn-
ing, the normalized weights of “place” and “object” increased, 
since the omnivorous Rity realized that the contexts, “toilet 
(place)” and “food (object),” were the causes of the punishment 
from a user. The normalized weight of “time” decreased. 

Fig. 11 shows the behavior generation frequency of the 
omnivorous Rity around the toilet. After learning, behaviors 
related to eating decreased from about 25% of the total number 
of selected behaviors around the toilet, 400 per day, to about 
11%, and behaviors related to excretion increased from about 
20% to about 28%. These results show that the omnivorous 
Rity with the habit of eating anywhere could be trained not to 
eat around the toilet by punishment from a user. In other 
words, the Rity’s characteristics could be changed through the 
learning process. 
iii) Experiment 3: Changing the characteristics of the timid Rity by 

reward 
In this experiment, a reward from a user in a specific situa-

tion was used to lead to direct the memory change. The timid 
Rity, as shown in Table 8, was a subject to be trained for one 
day. Assuming that cheerful and outgoing characteristics was 

0.6

0.5

0.4

0.3

0.2

0.1

0.0

N
or

m
al

iz
ed

 W
ei

gh
t

Time Place Object

Before Learning
After Learning

FIGURE 13 Change of the timid Rity’s normalized weights of 
 contexts.

50

40

30

20

10

0

F
re

qu
en

cy
 (

%
)

Stepping
Back

Following Kicking Barking

Before Learning
After Learning

FIGURE 14 Change of the timid Rity’s behavior generation frequency 
in the daytime.

25

20

15

10

5

0

F
re

qu
en

cy
 (

%
)

Eating
Quickly

Eating
Slowly

Excreting Urinating

Before Learning
After Learning

FIGURE 11 Change of the omnivorous Rity’s behavior generation 
frequency around the toilet.

0.40
0.35

0.30
0.25
0.20
0.15
0.10
0.05

0.00

N
or

m
al

iz
ed

 W
ei

gh
t

P
la

y

E
ne

rg
y

F
at

ig
ue

E
xc

re
tio

n

C
om

ra
de

-
S

hi
p

S
he

lte
r

S
ee

ki
ng

S
el

f-
P

ro
te

ct
io

n

Before Learning
After Learning

FIGURE 12 Change of the timid Rity’s normalized weights of wills.

The Rity’s characteristics could be changed through 
the learning process.
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more desired, the timid Rity was trained to be a desired one by 
giving a reward when it had done active behaviors, such as 
“kicking,” “following,” etc. 

Fig. 12 shows the change of the normalized weights of wills 
after learning. For the timid Rity, “will to self-protect” was the 
strongest desire compared to other wills before learning. The 
reward when it had behaved actively caused the increase of the 
normalized weights of “will to play” and “will to have com-
radeship” from 0.035 to 0.311 and from 0.036 to 0.162, 
 respectively, whereas the normalized weights of other wills 
decreased. As a result, “will to have comradeship” became the 
strongest desire. 

Fig. 13 shows the change of the normalized weights of 
contexts after learning. Initially, the normalized weights of 
“time,” “place” and “object” were the same. After learning, 
however, the normalized weight of “time” increased, since the 
reward was given mostly in the daytime, morning and after-
noon. On the other hand, the normalized weights of “place” 
and “object” decreased because of the normalization process. 
Fig. 14 shows the behavior generation frequency in the day-
time. After learning, the generation frequency of stepping-back 
behaviors decreased from 15% to 7% and that of barking 
behaviors from 28% to 10%. However, the generation fre-
quency of kicking-ball behavior increased from 7% to 42% 
and that of following-comrade behaviors from 0.2% to 13% In 
summary, the timid Rity became cheerful and outgoing 
through the learning process. 

V. Conclusion
This paper proposed the degree of consideration-based mecha-
nism of thought (DoC-MoT) and its application to the behav-
ior selection method for artificial creatures. Internal wills and 
external contexts, which account for the assumed facts, were 
defined as input symbols and behaviors were assigned as target 
symbols. The values of knowledge links between input and tar-
get symbols were represented by the partial evaluation values of 
target symbols over each input symbol. The DoCs for input 
symbols were described by the fuzzy measures, and the global 
evaluation of each target symbol was achieved by the fuzzy 
integral aggregating the DoCs and the partial evaluations in the 
memory. To demonstrate the effectiveness of the proposed 
method, experiments were carried out for an artificial creature 
“Rity.” The behaviors considering both will and context were 
selected by the proposed method, and Rity was successfully 
trained to adapt their characteristics according to the user pref-
erences. We believe that the DoC-MoT can also be used in 
robots to make them more responsive to the preferences of the 
human interacting with them. 
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